医心网  >  业内新闻  >   正文

多个国际中心合作研发!人工智能(AI)实现血管内光学相干断层扫描自动表征!

发布于:2021-02-05 17:44    


血管内光学相干断层扫描(IVOCT)可以详细地描述体内冠状动脉粥样硬化斑块的特征,然而,依靠视觉测量的项目不仅耗时还存在观察者的主观性。近日,《Eurointervention 》最新期刊上发表了一项人工智能(AI)参与IVOCT回撤影像分析的研究,结果证实搭载AI用于IVOCT斑块自动表征系统在内部和外部验证中均提供了极好的诊断准确性。该研究由上海交通大学生物医学工程学院、哈尔滨医科大学附属第二医院、福建医科大学附属协和医院、中国医学科学院阜外医院4家国内中心联合西班牙、美国、日本、爱尔兰、丹麦5家国际中心共同研发。


研究概述


     研究目的


     本研究旨在开发和验证一种采用人工智能(AI)自动表征IVOCT斑块特征的方法。


     研究方法


  (1)核心实验室分析了来自5个国际中心的IVOCT回撤影像,影像被标注了基本斑块成分、炎症和其他性质的结构。

    (2)研究者利用混合损耗法对研发的具有编解码结构和伪3D输入的深度卷积网络进行训练。这种被整合到商业软件中的网络,在参考核心实验室共识的基础上,对来自3个国际核心实验室的其他IVOCT回撤影像进行外部验证。


研究结果


   509个影像(来自391例患者)被分为10,517和1,156个横断面,分别用于训练和测试数据集。在测试数据集中,模型Dice系数分别为纤维斑块0.906,钙化0.848,脂质0.772。模型和人工测量在斑块负荷定量方面基本一致(R2=0.98)。在外部验证中,该软件从300个IVOCT横切面中正确识别了598个斑块区域中的518个,纤维斑块的诊断准确率为97.6%[95%CI:93.4%-99.3%],脂质90.5%[95%CI:85.2%-94.1%],钙化88.5%[95%CI:82.4%-92.7%]。分析所需的中位时间为每个回撤影像21.4秒(18.6-25.0秒)。


结 论


   搭载AI用于IVOCT斑块自动表征系统在内部和外部验证中都提供了极好的诊断准确性。该模型可减少图像判读的主观性,有助于IVOCT对斑块成分的定量分析,在研究和IVOCT引导PCI中具有潜在应用价值。


     参考文献


     Miao Chu, Haibo Jia, Juan Luis Gutiérrez-ChicoAutomatic,et al. Characterisation of Human Atherosclerotic Plaque Composition from Intravascular Optical Coherence Tomography Using Artificial Intelligence. DOI: 10.4244/EIJ-D-20-01355.



上一篇:冠心病不可不知的10个问题!
下一篇:TAVR术中预防冠脉阻塞的绝杀技——烟囱支架技术
评论列表:(评论 0 )以下网友评论只代表网友个人观点,不代表本站观点。
最短5个字
登录     注册